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SUMMARY

We have developed a theoretical model for the behavior of

sunspots as individuals. Two models, called the current sheath

model and the snowplow model, known in the theory of the pinch

effect are worked out for the present problem of the sunspot

expansion. Using the observational fact that the magnetic field

of the sunspots grows to about 3,000 gauss in about ten days,

numerical calculations based upon the current sheath model show

that the sunspot area grows with the magnetic field and begins

to pulsate when the magnetic field stops growing. The amplitude

and frequency of oscillation depend upon the mass in the current

sheath and the maximum magnetic field. The model suggests

that the bright ring about the sunspots may exist at chromo-

spheric height where the density of the material is about

l0 g particles/cm _ .





CONTENTS

Summary ................................... i

INTRODUCTION .............................. 1

OBSERVATIONAL DATA ........................ 2

THE CURRENT SHEATH MODEL .................. 3

THE SNOW PI,OW MODEL ...................... 8

THE EFFECT OF DENSITY AND

PRESSURE GRADIENTS ON

THE DYNAMICS OF SUNSPOTS ................. 9

THE BRIGHT RING AROUND SUNSPOTS ............. 11

ACKNOWLEDGMENTS .......................... 12

References .................................. 13

°..
Ill





A THEORETICALMODELFOR SUNSPOT COOLNESS

by

R. K. Jaggi

Goddard Space Fliqhl Center

INTRODUCTION

Among the unsolved problems in solar physics reviewed by Goldberg and Dyer (Reference 1) is

the difficulty in obtaining a theoretical interpretation of the mechanism of sunspot cooling. They

proposed two possible explanations: The gas pressure in the sunspot is low because part of the total

pressure is exerted by magnetic forces; in that case the configuration must approach an equilibrium

in which the sum of the kinetic and magnetic pressures equals the kinetic pressure outside. The

cooling could also be due to the forced expansion of a rising gas column. This second possibility is

discarded because there is no observational evidence that the gas column is really rising. Many

other models used to explain the coolness are based on the presence of a strong magnetic field (Ref-

erence 2, p. 172). Biermann (Reference 3) assumed that the low temperature is probably maintained

by the strong magnetic fields inMbiting convective transport of energy, thus causing steep tempera-

ture gradients in the outer parts of the spots.

At this point it would be instructive to estimate the time in which the sunspot region, radiating

like a blackbody, would fall from 6500 to 4500°K, the temperatures of the photosphere and a typical

sunspot respectively. If convection is completely stopped, the time of this temperature fall is deter-

mined by

L _ (nkT) c_T 4 ,

where • = 5.6 x 10 -s erg/cm2-sec-deg 4, and L , the total depth of the cool region, is given by

L nk(6500 - 4500)t 4, c7(5000 )4 ,

with k the Boltzmann constant and _ the radiation constant. For L = 10 s cm and n = 1017, the

above equation gives t _ 7.8 sec, which shows that the region will cool down instantaneously. Some

work has been done on the inhibition of convection in the presence of a magnetic field (References 4

and 5). The difficulty with Biermann's explanation is twofold: (1) it fails to explain the growth of

the sunspot area with time; and (2) the cooling appears one or two days after the observation of the

magnetic field. Also, any explanation of the sunspot coolness must at the same time explain the

Evershed effect as well as the bright ring around the sunspots (as known by observation).



DeJager(Reference2)hasmentionedthatthe ionswithenergiesgreaterthan3evare reflected
bythesunspot'smagneticfield; but this is onlyeffectivein theupper,lessdensepart of the solar
atmosphereandthereforedoesnotexplainlower temperatureat thephotosphericlevel. Theparti-
cles reflectedby thestrongmagneticfield of thesunspotwill leavetheregiononlyif themeanfree
pathis largeenoughto permit their escape.From Table1(in the last sectionof this paper),it is
clear that themeanfree pathis largeonlyin theupperchromosphere.

OBSERVATIONAL DATA

Before considering the theoretical model, we shall present some observational data. Most of

this material was given in two articles by De Jager (Reference 2 and 6).

The development of sunspots forms part of the development of a center q# activity (CA).

De Jager (Reference 6) has divided the development of a CA into four parts: (1) pre-spot phase;

(2) spot phase; (3) bipolar magnetic post-spot phase; and (4) unipolar magnetic phase. Of these, the

second is of most interest in the present problem. A typical sunspot consists of an umbra and a

penumbra, where the latter shows a radial filamentary structure, being slightly brighter than

the former. The mean umbral area of large sunspots is of the order of 5 x 10 -4 of the sun's visible

hemisphere and the radius of the umbra is of the order of 2.2 x 109 cm.

In the pre-spot phase the development of a bipolar magnetic field region as well as faculae

are observable without the spots. The limits of the faculae coincide more or less with the sunspot

region. The spot appears one or two days after the appearance of the magnetic field. The spot and

the magnetic field region increase in area simultaneously.

A fifteen day time sequence of the development of a typical sunspot group is given by De Jager

(Reference 2, p. 167). On the first day a single spot or a spot group without penumbra or without

bipolar structure is observed on the sun. On the second day the bipolar group and penumbras of

some of the bipolar spots appear. From five to ten days great bipolar spots as well as many smallones

appear. From ten to fifteen days great bipolar spot groups remain without their smaller companions.

During this time unipolar spots may also be observable.

Kiepenheuer (Reference 7) quotes Thiessen (Reference 8) as giving the following radial dis-

tribution of the vertical magnetic field in a sunspot:

H (r) _ Hm 1- . (1)

where b is the radius of the outer edge of the penumbra, the subscript z denotes the z component

of the field and the subscript m the field at the center of the spot, and r the radial distance meas-

ured from the axis of the spot. However, the magnetic field distribution as determined by Mattig

(Reference 9) is of the form:

H (_) _ H (1-_-_) _-2_/b_



Figure 1 is an approximate repcesenta- 1.2--

tion of this field (taken from Reference 2, __ 1.ol
-I

p. 156). At the center of the .,;pot the _" 0.8
magnetic field Hm is of the order of a few

thousand gauss. Assuming Hmt,) be 10 3
u_ 0.6

gauss we find that the magnetic 9ressure

H2/8-7 is approximately 4 × 10 _ and is "'
z 0.4
0

much higher than the kinetic pressure <

of the solar photospheric plasma .kT a: _ O.2

3 × 10 3. Thus the sunspot is under the
"T-

O

action of strong magnetic forces. Equating

H_8:., with the kinetic pressure 3 × 10 3 ,

we obtain H a: 260 gauss. Th('refore

whenever the magnetic field is compara-

ble to or higher than this value the sun-

spot will be under the action ,)f strong

magnetic forces.
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Figure t-Variatlons of magnetic Field strength over a

sunspot as function of radius from the center of the spot.
The distance to the spot center is expressed in terms of

penumbral radius.

The time variation of the magnetic

field observed over the sunspots is pre- _ 3000 f// ..

sented in Figure 2, which is taken from ca /"

Cowling (Reference 10). Analytically the _-_ 2000
I--3

curve may be approximated by a _ 1000
_J

" 0 ]
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Hm 3000 1 - e- _ e_U_ I

where t is measured in days.
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Figure 2-Variation of the field strength versus time in

days for a 55-day spot.

We shall now discuss the adiabatic

expansion of sunspots for the two models known as the current sheath and the snow plow models, in

order to determine the rate of cooling in both instances.

THE CURRENT SHEATH MODEL

The basic equations of mag._mtohydrodynamics are

dv 1
Nmi -d_ : c J _:B - grad p ,

?_N
_--_- = -div(Nv) ,

(3)

47T

Cur I B _ -c J (4)



div II = 0 ,

3B

_--_ - Cu r 1

div E = 4_

v x B) ,

where the symbols have their usual meaning, _: is the charge density, and m_ the mass of an ion.

From Equations 1 and 4, we obtain, in cylindrical coordinates

chin [ 2r ]J - 4,_ O, b2 ' 0 ;

therefore the force,

1 _ Hmr l1 ru/ Ol- , o, ,

H

Hm

Figure 3-Modlfled form of Figure 1 used in calculating
the expansion of sunspots.

is directed radially outward force. Consequently

the cylinder must expand in the radial direction.

To simplify the model we modify the

distribution of the magnetic field given by

Equation 1 in Figure 1 to that given in Fig-

ure 3. A portion of the cylinder is assumed to

have a uniform magnetic field while the gradients

of the magnetic field are assumed to be in the

rest of the cylinder. The region occupied by this

current is called "the current sheath." Equation

(3) can be rewritten as

dv 1 1 (B.V) B - grad p .Nmi dt = -_ grad B 2 +

In the present case the term (B • v) B = 0 because it is assumed that B is in the z-direction but there

are no gradients in the z-direction. Integrating over the thickness of the current sheath, multiplying

both sides by 2_r, assuming that the acceleration over the cross-section of the current sheath and

the density in the current sheath are uniform, we obtain

M d2r 2vr/_ + Pi Po)c_ dt 2 : - , (5)

where P0 is the kinetic pressure due to the gases outside the cylinder, Pi the average kinetic pres-

sure due to gases within the cylinder, and g_ the average magnetic field within the cylinder, and M

the total mass contained in the cylinder, a has been introduced to insure that only a fraction of the

total mass of the cylinder is contained in the current sheath. We shall assume that P0 remains



constantandthat b, : P0at t :: 0. Thechangesin thekineticpressuresatisfytheordinaryadia-
batic law

P
- Con_t_.t . (6)

N5/3

If B0 is the initial magnetic field and r 0 the initial radius of the cylinder, the constancy of the mag-

netic flux in the cylinder gives

rrro2 Bo ryr2 Bi

or

_, : B0 (7)

Then, since N is proportional to 1/r 2 , Equation 6 yields

/_r_o_'°/a
P, = Po\r] (8)

Substituting Equations 7 and 8 imo Equation 5 gives

Now by writing r/r o

M (i 2 r 4

2rr_ dt2 r L8w + Po - P •

: x, Bd/8wp9 : :::i

±

and (m/2rTap o) 2 t' - t the above equation becomes

1 (12x ;_ 1-- - _-- + 1 . (9)
x dtt2 x 4 10

X 3

To discuss the solution of Equation 9, the dependence of ]3 on time must be known. According to

observations, Equation (2), and Figure 2, the magnetic field rises in a matter of 10 days to a value

of about 3000 gauss and remains at that value for about 40 days. Since the growth time is compara-

tively shorter than the lifetime of the magnetic field we may assume the magnetic field as a function

of time given by Figure 4.

By assuming this magnetic field profile, it is possible to integrate Equation 9. The integration

yields

1 _2 = C- 1 x2 3 _ 4 1 dx_ 2

If t ' : 0, x : 1, x : 0 can be assumed as the initial condition, then

(10)



wherethedotdenotesdifferentiationwith respectto t'. Figure 5showstherelationshipof _ andx;
andx 1, x x* are thesolutionsof

31 4)1-×_ _- 1-×_ _;_(I-,,-;) o.

'3°I£ 2000
,"7
0

1000

<

_i o
TI ME -----_

Figure 4-Profile used to deduce Equation 10.
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Figure 6-The solution of Equation lO For _ = 5, 10, 50.

Figure 5-Representatlon of Equation ]9.

Initially x is an increasing function of t

because _ > 0 at t - o. Figure 5 shows

that x is an oscillatory function of t. A

complete solution of Equation 9, obtained

on IBM 7090 computer, is represented in

Figure 6 for Z = 5, 10, 50. Here, the

amplitude of oscillation increases with /_.

To obtain a solution of Equation 9, in

the general case, where the profile of the

magnetic field is given by Equation 3 we

must be cautious. If we use the expression

for Bi given in Equation 3 the solution is

unstable because _ > 0 for all t andfor any

reasonable value of the magnetic field

strength. For this reason we assume that

the magnetic field is induced into the area

at the rate given by Equation 3. The prob-

lem here is to find a magnetic field profile

which gives B0(t)/×2 close to the curve

given in Figure 2 and which gives a

reasonably good fit for the area variation.

Assuming then that ". ' _ _
4



G )(lo)Bo(t ) B - e 2_ 1 - e s'sa ,

where t is now measured in se(onds and d is the number of seconds in one day, we have-instead

of Equation 9

t 2 t 2

d2x x- _ L - 2_-_ +g. - lo: _ - e 1 - e I

(It 2 -x _ x3

where

d B 2

tl if _I ' _ :: 8wP0

V 2_ap 0

A solution of Equation 10 for _ 5, t I :- 1 is presented in Figure 7. The radius of the cylinder

reaches a value of 1.6, oscillates about it and finally returns to its original value when the magnetic

field has disappeared. The period of oscillation is 3 days and the amplitude of oscillation is about

0.25 r o. Figures 8 and 9 present the velocity dx/dt and the temperature ratio T/T o as a function

of t.

1.8 !,'

1.7

1.6- l 5

1.5

II 1.4

× 1.3

1.2

1.1

1.0 1 3 5 7 9 11 13 35 37 39 41 43 45 47 49 51 53

TIME (days)

Figure 7-:-A 55-day spot represented by Equation 11 for _ = 5.

.4

.3

.2

.1

0

-.4

1

0

I l I i I i , I I I I I I 11.1 I 1 I I J
2 4 6 ;_ 10 2 4 "40 2 4

TI ME (days)

Fig_Jre 8-Representation of Equation ]1 for _ = 5.
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Figure 9-T/1" 0 versus t represented by Equation 1] For C = 5.

The assumptiont, : 1 corresponds to M/2TTap0 = (86.400) _ or _ = 6 X 10S where we have used

r 0 = 109 cm and p = 104. Therefore, a fraction 1/(6 x 10 3) of the total mass of the cylinder is

contained in the current sheath. For much higher values of_, the value of t 1 becomes large and

the period of oscillation of the cylindrical sheath may become much smaller than that of Figure 7.

THE SNOW PLOW MODEL

In the snow plow model, first discussed by Rosenbluth (Reference 11), the magnetic field is

homogeneous throughout the interior of the cylinder. The current sheath is in an infinitely thin layer

of negligible mass. As the sheath expands it collects all the mass with which it comes in contact,

as a snow plow collects the snow in its path. If r 0 is the initial radius of the cylinder and r the

radius at any time t, the mass with the sheath is 77Nrni (r 2 - %2) where N is the average number
density of ions of mass mi . Newton's equation of motion of the sheath then becomes

Using the transformations

r

x
r 0

B:
8_Po ,

1

L-  o_J t, = t ,



we obtain the equation

dt' (x 2 - 1)d_'J : x + x--Y (12)

where Equations 7 and 8 were m,_ed to express Bi in terms of Bo and Pi in terms of P0" With the

magnetic field profile of Figure 4, this equation was solved on an IBM 7090 and its solution is shown

graphically in Figure 10. The i_itial conditions satisfied by this equation are t' : o , x : 1, i : _.

The solution is shown in Figure 10 for /? = 5, 10, and 50.

A peculiar feature of this diI] erential equation is that while in the expanding phase the sheath collects

all mass with which it comes in contact; however, in the contracting phase it is losing its mass-

not exactly in the same way as a snow plow because the snow plow loses its mass instantaneously

when the direction of the velocity is reversed. We can therefore only follow the calculation of the snow

plow model until the velocity re,_rerses in sign. For that reason this model will not be discussed in

detail.

5

4

II
x

I I I I 1 I I I
0 1 2 3 4 5 6 7 8 9

t

t

Figure ]O-The solution of Equation ]2 for /_" : 5, 10, 50.

THE EFFECT OF DENSITY AND PRESSURE GRADIENTS ON

THE DYNAMICS OF SUNSPOTS

The pressure and density both rise in the lower levels of the photosphere. Figures 11 and 12

show the graph of the variation of the density P and the pressure p from the surface of the photo-

sphere to the depth of a few huncLred kilometers. In the solar photosphere, the pressure rises more
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Figure ]2-Varlation of p versus height in the solar

(Taken from Reference 10, p. 127,

rapidly with depth than the density. For example at 3

a depth of about 400 km the pressure is about 20

times that at the surface of the photosphere and the

density is about 10 times that at the surface. If the

photosphere is assumed to be stratified, the lower 2

layers have less amplitude of oscillation than those

at the surface. Also if the lower layers oscillate o

independently the frequency of oscillation can be H
X

different at the lower levels. Replacing Po with 20p 0

in Equations 5 and 8, we obtain in place of Equa- 1

tion 9:

1 d 2 x /_ 20

x dt' 2 x 4 + *0 20 . (13)
x-3--

The solution of this equation is shown in Figure 13.

The frequency of oscillation of x in Figure 13

is about .75, and in Figure 6 it is about 3.2. Thus

.8= 50

0 I 1 _
0 1 2 3

t'

Figure 13-Representation of Equation 13

for /_ : 5, l 0, 50.
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the two periods of oscillation are

t 1 = 3.2

Therefore the ratio. 75.."3.2

_ 7'rr 02 P__

= ) .
1

_:_ /p)5 is greater than or less than one depending on whether _,' > 18.2_,.• t <

In order to draw any conclusions about the frequency of oscillation we must know the variation of

density with depth. From the fii_res given by Minneart (1953), in Figure 12, we find that /,' __ 10 ; .

We therefore conclude that the period of oscillation at lower levels in the solar photosphere is approxi-

mately the same as at the surface. This subject will be taken up in a later paper.

THE BRIGHT RING AROUND SUNSPOTS

During the initial growth o; the 55-day spot considered the velocity of the current sheath has

a value of about 1-10 km/sec. Charged particles with their thermal velocities suffer reflection

from these initially outward moving sheath and gain energy. These particles will then move a few

mean free paths before loosing the energy gained from reflection. Therefore additional light in the

solar photosphere or chromosphere, will be generated and a bright ring around a spot, with awidth

of the order of a mean free path will be created.

The self collision time of particles of mass m and charge e is given by

1 3

mg(akT) g
t c =

8 x O,714"rrne4z 4 lo'_ A

where

Thus the mean free path is

L
3 /k3T3_ 2

A

2e2z 2

(3kT) 2
=

8 × 0.714_ne4z 4 log A

1.8 × 10ST 2

and is independent of the ma:;s of the particle. In Table 1 this quantity is given for N = 106 to

11



Table 1

Mean Free Path of a Charged Particle for the Temperatures and Number Densities Shown.

Temperature
(°K)

103

10 4

Mean Free Path of Charged Particles

N = 106 particles

1.4x 10 4

1.1 × lO s

N = 109 particles N = 10 12 particles N = 1015 particles
cm _r cm 3 cm 3

19

1.4 _<10 3 1.9

105 .91 × 10 e 1.1 × lO s 1.4 × 102 .19

10 6 .79× 10 10 .93 × 10 7 1.1 x 10 4 14.5

10 is particles/cm s and T --- 10 s to 10 6 OK. From this table it appears that the upper chromosphere is

the region where the mean free path is measurable by optical methods. Near the photosphere the mean

free path is too short and the thickness of the bright ring will probably be too small to be measured.

A radially outward moving current sheath moving with a velocity of the order of one km/sec pro-

duces a shock wave the thickness of which is of the order of

1

C 3 _ 1010 (10-27) _ Table 2
10 -- = 10

P (4 × 10 is × 25 _ 10-2°) 7 Variation of cf_Jpwlth NumberDensit

(Reference 13) which is also too small. Table 2 shows the

variation of c/¢% with density.

It is only in the upper chromosphere that the thickness

of the shock is sufficient to be observable. Therefore, ac-

cording to the present analysis, the bright ring should be

observed to be expanding.

N

(Partlcles_
\ cm 3 )

c/,_p

10 3 1.7 × 10 4

1_ 540

109 17

1012 .54

1015 1.7 × 10-2
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